
Understanding the properties and limitations of
contrastive learning for Out-of-Distribution detection

Nawid Keshtmand
Dept. Aerospace Engineering

University of Bristol
Email: yl18410@bristol.ac.uk

Raul Santos-Rodriguez
Dept. Engineering Mathematics

University of Bristol
Email:enrsr@bris.ac.uk

Jonathan Lawry
Dept. Engineering Mathematics

University of Bristol
Email: j.lawry@bris.ac.uk

Abstract—A recent popular approach to out-of-distribution
(OOD) detection is based on a self-supervised learning technique
referred to as contrastive learning. There are two main variants
of contrastive learning, namely instance and class discrimina-
tion, targeting features that can discriminate between different
instances for the former, and different classes for the latter.
In this paper, we aim to understand the effectiveness and limita-
tion of existing contrastive learning methods for OOD detection.
We approach this in 3 ways. First, we systematically study
the performance difference between the instance discrimination
and supervised contrastive learning variants in different OOD
detection settings. Second, we study which in-distribution (ID)
classes OOD data tend to be classified into. Finally, we study
the spectral decay property of the different contrastive learning
approaches and examine how it correlates with OOD detection
performance. In scenarios where the ID and OOD datasets are
sufficiently different from one another, we see that instance
discrimination, in the absence of fine-tuning, is competitive with
supervised approaches in OOD detection. We see that OOD
samples tend to be classified into classes that have a distribution
similar to the distribution of the entire dataset. Furthermore,
we show that contrastive learning learns a feature space that
contains singular vectors containing several directions with a
high variance which can be detrimental or beneficial to OOD
detection depending on the inference approach used

I. INTRODUCTION

In recent years, neural networks have been increasingly de-
ployed for prediction tasks. However, they still make erroneous
predictions when exposed to inputs from an unfamiliar distri-
bution (1). This poses a significant obstacle to the deployment
of neural networks in safety-critical applications. Therefore,
for applications in these domains, it is necessary to be able
to distinguish in-distribution (ID) data from data belonging
to a different distribution on which the neural network was
trained (OOD data). The problem of detecting such inputs is
generally referred to as out-of-distribution (OOD) detection,
outlier detection, or anomaly detection (2).

Recent studies have shown that a type of self-supervised
learning referred to as contrastive learning can learn a fea-
ture space that is able to capture the features of an input
x that enable effective OOD detection (3; 4; 5). The two
main types of contrastive learning approaches are referred
to as unsupervised instance discrimination and supervised
contrastive learning/supervised class discrimination. The for-
mer works by bringing together the features of the different
views of the same data point close together in the feature

space enabling discrimination between different instances (3).
Instead, supervised contrastive learning brings data points
belonging to the same class close together in feature space,
which enables discrimination between data points belonging
to different classes (6). In light of the variety of contrastive
learning approaches used in practice, it is difficult to ascertain
which properties of contrastive learning are beneficial to OOD
detection. In this work, we aim to understand the effectiveness
and limitations of existing contrastive learning methods for
OOD detection. We approach this in 3 ways.

1) We systematically study the performance difference of
the instance discrimination and supervised contrastive
learning variants in different OOD detection settings
(Section IV).

2) We investigate which ID classes OOD data tend to be
classified into.

3) We analyze the spectral decay property of the different
contrastive learning approaches and how it correlates
with OOD detection performance. The spectral decay
indicates how many different directions of high variance
are present in the feature space and is related to the
feature space compression (7).

This involves designing a fair training setup, categorizing the
difficulty of OOD detection based on whether ID and OOD
datasets are semantically similar (near-OOD) or unrelated (far-
OOD), as well as comparing the OOD detection performance
using established metrics (Section III). Our main findings and
contributions are summarized below: The key contributions of
the paper are as follows:

• We perform experiments that show unsupervised instance
discrimination, in the absence of fine-tuning, is well-
suited to far-OOD detection, where it can be competitive
with supervised approaches but ineffective at near-OOD
detection (Section IV).

• We analyze the classification of OOD samples and see
that they tend to be classified into classes that have
a distribution similar to the distribution of the entire
dataset. This suggests that similar to the phenomena seen
in deep generative models, discriminative models assign
OOD samples to classes where the latent features capture
non-class discriminatory information rather than class-
discriminatory information (8) (Section V).



• We show that contrastive learning learns a feature space
that contains singular vectors containing several direc-
tions with a high variance which can be detrimental or
beneficial to OOD detection depending on the inference
approach used (Section VI).

II. BACKGROUND

Most OOD detection methods use the features obtained
from a classification network trained with the supervised cross-
entropy loss. These classification networks learn decision
boundaries that discriminate between the classes in the training
set. However, using a conventional cross-entropy loss does not
incentivize a network to learn features beyond the minimum
necessary to discriminate between the different classes and
therefore may not be well suited for OOD detection. An
alternative to using classification networks for learning is
contrastive learning (9). The idea of contrastive learning is
to learn an encoder fθ, where θ denotes the parameters of the
encoder, to extract the necessary information to distinguish
between similar and other samples. Let x be a query, whilst
{x+} and {x−} denote the sets of positive samples of x and
negative samples of x respectively. The goal of contrastive loss
is to learn features of x, denoted z = fθ(x), similar to the
features of {x+} denoted {z+} = fθ({x+}) whilst also being
dissimilar to {z−} = fθ({x−}). The most common form of
similarity measure between features z and z′ is given by the
cosine similarity as given in Eqn. 1:

sim(z, z′) =
z · z′

‖z‖ ‖z′‖
(1)

The first type of contrastive loss considered in this paper is
the Momentum Contrast (Moco) loss (10), where the objective
relates to the task of instance discrimination and utilizes two
different encoders, a query encoder fθq and a key encoder
fθk . The parameters of the query encoder are updated using
traditional backpropagation, whilst the parameters of the key
encoder are an exponentially weighted average of the param-
eters of the query encoder, shown by Eqn. 2:

θ
′

k = mθk + (1−m)θq (2)

where m is an encoder momentum hyperparameter, θq are
parameters of the query encoder, and θk and θ

′

k are the
parameters of the key encoder before and after the update
respectively.

The setup for the training process is as follows. Let x̃1i
and x̃2i be two independent augmentations of xi, namely
x̃1i = T1(xi) and x̃2i = T2(xi) where T1, T2 are separate
augmentation operators sampled from the same family of
augmentations T . The Moco objective treats each (x̃1i , x̃

2
i ) and

(x̃2i , x̃
1
i ) as a query-positive key pair xquery, xkeypos . Query

data points are passed through a query encoder to obtain
query features q = fθq (x

query) and key data points are
passed through the key encoder to obtain the key features
kpos = fθk(x

keypos). The contrastive loss for Moco, Lmoco
is then given by Eqn. 3:

Lmoco = −log
q · kpos/τ∑K

i=0 exp(q · ki/τ)
(3)

where kpos is the positive key for each query q, whilst ki are
previous outputs of the key encoder which were saved in a
queue and τ refers to a temperature hyperparameter.

The second type of contrastive loss considered in this paper
is the Supervised Contrastive (SupCLR) loss (6). The SupCLR
loss is a generalization of the instance discrimination loss
which can deal with an arbitrary number of positives samples
to enable contrasting samples in a class-wise manner instead of
an instance-wise manner. In this case, all the data points in the
same class as the query xquery are treated as positive samples
xkeypos whilst data points in a different class as the query are
treated as negative samples xkeyneg . The SupCLR loss only
requires using a single encoder fθ to obtain features for the
queries q, positive keys kpos and negative keys kneg where
q = fθ(x

query), kpos = fθ(x
keypos) and kneg = fθ(x

keyneg ).
The SupCLR contrastive loss is then given by Eqn. 4:

LSupCLR =
−1
|P (q))

∑
pos∈P (q)

log
exp(q · kpos/τ)∑
i∈A(q) exp(q · ki/τ)

(4)

Here, P (q) is the set of indices of all positives keys of q
which are present in the batch, and |P (q)| is its cardinality.
A(q) is the set of all indices in the batch excluding q itself,
this includes both kpos and kneg . Intuitively, the instance
discrimination loss learns the features in each instance which
makes it different from other instances whilst also being
invariant to data augmentation, whilst the SupCLR loss learns
the features in common between different instances of the
same class.

III. OOD EXPERIMENTAL PRELIMINARIES

In this section, we discuss the experimental setup that we
use throughout this work.

Datasets We study OOD detection for the following ID dataset
(Din) and OOD dataset (Dout) pairs. We use both simple
grayscale dataset pairs and more complex RGB dataset pairs
for the task. For the grayscale dataset case which uses MNIST,
FashionMNIST, and KMNIST, one of the datasets is defined as
Din whilst the other datasets are defined as Dout (11; 12; 13).
For the RGB datasets, we use CIFAR-10, CIFAR100 as well
as SVHN and follows the same procedure where one dataset is
defined as Din whilst the others are defined as Dout (14; 15).

Similar to Winkens et al, we use the class-wise confusion
log probability (CLP) as a measure of the difficulty of an OOD
detection task (4). As described in Winkens et al, CLP is based
on the probability of a classifier confusing OOD data with
ID data. This involves computing an estimate of the expected
probability of a test OOD sample x being predicted to be an
ID class k by an ensemble of N classifiers as given by:

ck(x) =
1

N

N∑
j=1

pj(ŷ = k|x) (5)



where pj(ŷ = k|x) refers to the probability that the jth

classifier assigns x as belonging to class k. The class-wise
confusion log probability (CLP) of ID class k for Dtest
becomes:

CLPk(Dtest) = log

(
1

Dtest

∑
x∈Dtest

ck(x)

)
(6)

We compute the CLP with Dtest being the test samples
belonging to the OOD dataset. The distance between the
dataset pairs is defined by the min-max bounds on the CLP
(lowest CLP value to highest CLP value for the dataset pair).
In our work, we use 3 Resnet-18 models to calculate ck(x). For
further details on the Confusion Log probability, see Winkens
et al (4), section 4.

Datasets CLP bounds
ID:MNIST, OOD:FashionMNIST -7.26 to -7.15
ID:MNIST, OOD:KMNIST -7.29 to -6.88
ID:FashionMNIST, OOD:MNIST -7.43 to -7.23
ID:FashionMNIST, OOD:KMNIST -7.31 to -6.54
ID:KMNIST, OOD:MNIST -6.87 to -6.03
ID:KMNIST, OOD:FashionMNIST -7.22 to -6.96
ID:CIFAR10, OOD:SVHN -7.25 to -6.27
ID:CIFAR10, OOD:CIFAR100 -4.80 to -3.53
ID:CIFAR100, OOD:SVHN -9.08 to -7.52
ID:CIFAR100, OOD:CIFAR10 -7.74 to -4.94

TABLE I
CLASS-WISE CONFUSION LOG PROBABILITY (CLP) MIN-MAX BOUNDS

FOR THE DIFFERENT ID-OOD DATASET PAIRS.

The min-max bounds of the CLP for the different dataset
pairs are given in Table I. For the purpose of categorizing the
different dataset pairs, we label pairs that have both values
for the bounds of the CLP above 6.5 as a far-OOD dataset
pair, below 6.5 as near-OOD dataset pair, and dataset pairs
which have bounds that have a value above and below 6.5 as
a near & far-OOD dataset pair. The CLP values were chosen
by hand so as to separate the datasets and enable comparison.

Metrics We measure the quality of OOD detection using the
established metrics for this task, which are the AUROC, AUPR
and the FPR at 95% TPR (16). For the AUPR, we treat OOD
examples as the positive class. Unless otherwise stated, metrics
reported in this work are obtained based on 8 repeat readings.
Training Setup Experiments were conducted using 2 Tesla
P100-PCIE-16GB with 28 CPUs using Pytorch Version 1.7.1
and Pytorch Lightning Version 1.2.3 (17; 18). We adopt a
Resnet-50 as the encoder fθ for all the different models with
a fixed-dimensional output dimensionality of 128-D with the
outputs being l2 normalized (19). For the case of the classi-
fication network, also referred to as the Cross-Entropy (CE)
model, the output of the Resnet-50 encoder is followed by an
additional fully connected layer with an output dimensionality
equal to the number of classes in the ID training data.

For the case of the Moco model, both the query encoder
and the key encoder have the same architecture. All models
are trained for 300 epochs with a batch size of 256, using
the SGD optimizer with a learning rate of 3e−2, optimizer

momentum of 0.9 and weight decay of 1e−4, queue size of
4096, and an encoder momentum m of 0.999. Furthermore,
both the Moco and SupCLR model use a softmax temperature
τ of 0.07 in the loss function.

For data augmentation, we use random crop and resize
(with random flip), color distortion (for the RGB datasets),
and Gaussian blur.

IV. INSTANCE DISCRIMINATION IS EFFECTIVE FOR
FAR-OOD DETECTION

A. Hypothesis

We hypothesized that as instance discrimination requires
being able to distinguish each individual sample from one
another, the model trained using instance discrimination will
output features z which retains a large amount of information
about the input x. By retaining a large amount of information
regarding an input, the Moco model could achieve high OOD
performance. This depends on how semantically similar the
ID and OOD points are to one another and what information
the inference approach focuses on.

B. Procedure

To investigate when the instance discrimination loss is
effective, we compare the Moco model with the SupCLR and
CE model to see the difference when using training labels
in the training process. Furthermore, we look at the effect
of supervised labels during inference by examining the OOD
detection performance of different models across several dif-
ferent dataset pairs using two different inference approaches.
The inference approaches used are the Mahalanobis Distance
with class-dependent covariance matrices (4) which use class
labels, as well as the kernel density estimation (KDE) approach
which does not use class labels.

C. Results

For the case of the KDE approach, Table II shows that the
Moco model consistently performed worse. This showed that
in the absence of any training labels, the instance discrimina-
tion training makes it difficult to group ID data together and
therefore leads to poor OOD detection performance. Further-
more, the CE model is generally the highest performing model
across the metrics, even outperforming SupCLR. This shows
that in the absence of labels during the inference process, the
CE model is best able to group the data in the feature space
such that the OOD test data are farther than the ID test data
from the ID training data points.

For the task of OOD detection using the Mahalanobis Dis-
tance inference approach, Table III shows that for the grayscale
datasets, the Moco model is competitive with the CE model
and the SupCLR model achieves the best results. This shows
that for the grayscale datasets, the features learned from con-
trastive learning are able to compete with or outperform the CE
model. However, for the case of the RGB datasets, the Moco
approach outperforms the CE model on the CIFAR10-SVHN
dataset pair and outperforms SupCLR on the CIFAR100-
SVHN dataset pair, both of which are categorized as far-OOD.



ID OOD AUROC AUPR FPR

CE/Moco/SupCLR

CIFAR10 SVHN 0.950 / 0.574 / 0.962* 0.975 / 0.779 / 0.980* 0.166 / 0.887 / 0.170
CIFAR100 0.883 / 0.576 / 0.882 0.863 / 0.591 / 0.864* 0.399 / 0.888 / 0.415
MNIST 0.939 / 0.462 / 0.900 0.920 / 0.437 / 0.880 0.219 / 0.875 / 0.346
FashionMNIST 0.955 / 0.514 / 0.943 0.943 / 0.487 / 0.933 0.162 / 0.887 / 0.232
KMNIST 0.941 / 0.472 / 0.935 0.911 / 0.444 / 0.915* 0.188 / 0.893 / 0.233

CIFAR100 SVHN 0.853 / 0.567 / 0.828 0.907 / 0.767 / 0.897 0.415 / 0.879 / 0.482
CIFAR10 0.726 / 0.569 / 0.736* 0.680 / 0.562 / 0.693* 0.784 / 0.881 / 0.722*
MNIST 0.646 / 0.307 / 0.594 0.620 / 0.378 / 0.564 0.719 / 0.964 / 0.775
FashionMNIST 0.851 / 0.522 / 0.841 0.812 / 0.484 / 0.806 0.458 / 0.881 / 0.485
KMNIST 0.757 / 0.403 / 0.769* 0.720 / 0.413 / 0.736* 0.608 / 0.945 / 0.643

MNIST FashionMNIST 0.984 / 0.587 / 0.992* 0.979 / 0.621 / 0.99* 0.080 / 0.899 / 0.034*
KMNIST 0.957 / 0.616 / 0.982* 0.958 / 0.694 / 0.98* 0.218 / 0.899 / 0.077*

FashionMNIST MNIST 0.807 / 0.624 / 0.754 0.818 / 0.606 / 0.804 0.614 / 0.821 / 0.820
KMNIST 0.821 / 0.638 / 0.791 0.822 / 0.611 / 0.821 0.576 / 0.771 / 0.738

KMNIST MNIST 0.972 / 0.656 / 0.971 0.970 / 0.712 / 0.966 0.108 / 0.822 / 0.107*
FashionMNIST 0.985 / 0.620 / 0.985 0.984 / 0.621 / 0.978 0.056 / 0.818 / 0.056

TABLE II
AUROC, AUPR AND FPR FOR DIFFERENT MODELS ON DIFFERENT ID-OOD DATASET PAIRS USING THE KDE APPROACH AND * INDICATES THAT AN

APPROACH IS BETTER THAN THE CE BASELINE.

ID OOD AUROC AUPR FPR

CE/Moco/SupCLR

CIFAR10 SVHN 0.891 / 0.908* / 0.950* 0.939 / 0.960* / 0.973* 0.283 / 0.408 / 0.187*
CIFAR100 0.875 / 0.784 / 0.902* 0.851 / 0.778 / 0.892* 0.418 / 0.657 / 0.386*
MNIST 0.931 / 0.988* / 0.951* 0.906 / 0.985* / 0.935* 0.214 / 0.051* / 0.176*
FashionMNIST 0.945 / 0.971* / 0.973* 0.926 / 0.971* / 0.965* 0.180 / 0.143* / 0.111*
KMNIST 0.929 / 0.952* / 0.956* 0.892 / 0.941* / 0.933* 0.195 / 0.174* / 0.142*

CIFAR100 SVHN 0.858 / 0.828 / 0.818 0.900 / 0.908* / 0.870 0.420 / 0.565 / 0.413*
CIFAR10 0.731 / 0.614 / 0.746* 0.680 / 0.574 / 0.698* 0.730 / 0.836 / 0.683*
MNIST 0.656 / 0.398 / 0.625 0.623 / 0.467 / 0.604 0.754 / 0.964 / 0.811
FashionMNIST 0.886 / 0.895* / 0.902* 0.856 / 0.880* / 0.877* 0.375 / 0.403 / 0.319*
KMNIST 0.777 / 0.604 / 0.798* 0.730 / 0.595 / 0.762* 0.588 / 0.887 / 0.599

MNIST FashionMNIST 0.988 / 0.997* / 0.990* 0.985 / 0.995* / 0.983 0.018 / 0.012* / 0.028
KMNIST 0.984 / 0.972 / 0.993* 0.982 / 0.962 / 0.991* 0.061 / 0.108 / 0.030*

FashionMNIST MNIST 0.921 / 0.980* / 0.971* 0.933 / 0.980* / 0.969* 0.456 / 0.105* / 0.138*
KMNIST 0.941 / 0.966* / 0.972* 0.950 / 0.965* / 0.969* 0.309 / 0.173* / 0.138*

KMNIST MNIST 0.973 / 0.957 / 0.991* 0.970 / 0.954 / 0.989* 0.089 / 0.208 / 0.037*
FashionMNIST 0.962 / 0.982* / 0.984* 0.953 / 0.978* / 0.973* 0.219 / 0.076* / 0.043*

TABLE III
AUROC, AUPR AND FPR FOR DIFFERENT MODELS ON DIFFERENT ID-OOD DATASET PAIRS USING THE MAHALANOBIS DISTANCE INFERENCE

APPROACH AND * INDICATES THAT AN APPROACH IS BETTER THAN THE CE BASELINE

In contrast, for the case of CIFAR10-CIFAR100 (near-OOD)
and CIFAR100-CIFAR10 (near & far-OOD), Moco performs
significantly worse than both supervised approaches. This
suggests that for far-OOD detection tasks, it can be beneficial
to use the unsupervised instance discrimination training to
perform OOD detection, although, class discriminatory infor-
mation obtained from supervised training is important for high
performance in near-OOD detection settings. Furthermore, it
can be seen that using class labels to group the features during
the inference process leads to a larger improvement in the
contrastive learning models compared to the CE model as
shown by a larger improvement in the contrastive models when
using the Mahalanobis Distance inference approach rather than
KDE.

V. OOD SAMPLES ARE CLASSIFIED INTO CLASSES THAT
LEARN NON-CLASS DISCRIMINATORY STATISTICS

A. Hypothesis

We hypothesized that the more similar a class distribution is
to the distribution of the entire dataset, which we refer to as the
overall distribution, the more likely it is that OOD data will be
misclassified as that class. The intuition here is that OOD data
tends to be misclassified as belonging to the least distinctive
class. We believe that the similarity of a class distribution to
the overall distribution indicates how much the features of a
particular class contain non-class discriminatory information,
which indicates how distinctive the class distribution is.

B. Procedure

To quantify the dissimilarity of the class distribution to the
overall distribution, we approximated the class distribution as
well as the overall distribution by Gaussian distributions and



calculated the KL divergence between the overall distribution
and class distribution, KL (Overall‖Class). Furthermore, the
expected Overall-Class KL as shown by Eqn. 7 was calculated
for the contrastive models to see whether there was any
difference in this metric between the two approaches.

E [KL (Overall‖Class)] =
K∑
k

KL (Overall‖Classk) (7)

C. Results

Fig. 1. Scatter plot of the normalized KL divergence between the overall
distribution and class distribution, KL (Overall‖Class) (normalized by
dividing by the maximum KL (Overall‖Class)), and the class-wise con-
fusion log probability (CLP).

From Fig. 1, it can be seen that there is a negative correlation
between the KL divergence and the class-wise confusion
log probability. This supports our hypothesis that the more
dissimilar the class distribution is to the overall distribution,
the more likely OOD data points will be misclassified into
that ID class. This behavior agrees with the phenomena seen
in deep generative models where OOD data points are given
high likelihoods by arbitrarily having low compressed lengths
and being similar to the non-class discriminatory statistics of
the data (8).

Datasets Moco SupCLR
MNIST 173.790 567.539
FashionMNIST 249.147 1484.179
KMNIST 122.158 468.819
CIFAR10 44.395 193.645
CIFAR100 96.943 1603.609

TABLE IV
EXPECTED OVERALL-CLASS KL BETWEEN THE OVERALL DISTRIBUTION

AND CLASS DISTRIBUTION, E [KL (Overall‖Class)], WHEN USING
DIFFERENT LEARNING APPROACHES.

From Table IV, it can be seen that the Moco model had
expected Overall-Class KL values smaller than the SupCLR
model. We believe this explains why the Moco model performs
poorly on the near-OOD detection pairs such as CIFAR10-
CIFAR100 and CIFAR100-CIFAR10. For the case of Moco
where there is a small KL divergence between the overall and

class distributions, it indicates that the features from Moco
capture general non-class discriminatory information which is
common in the ID dataset. This can make near-OOD detection
difficult as the OOD dataset is likely to have similar non-
class discriminatory statistics in common with the ID dataset.
However, in the case of a far-OOD detection situation, the non-
class discriminatory statistics are sufficiently different between
the two datasets to enable Moco to effectively detect OOD
data.

VI. NUMBER OF DIRECTIONS OF SIGNIFICANT VARIANCE

A. Hypothesis

From the OOD detection results (Section IV), contrastive
learning results in poorer performance in OOD detection than
the traditional CE model when using KDE than when using
the Mahalanobis Distance approach. We claim that this is, at
least in part, due to contrastive learning trained models learn
a rich feature space with several different directions of high
variance (4).

In the situation where KDE is used for inference, having
a feature space with several directions of variance is likely
to result in the OOD data having similar features to the ID
data, leading to the misclassification of OOD data as ID.
However, in the situation where the Mahalanobis Distance
inference approach is used, using class labeled data can help
to identify which factors of variation are important for class
discrimination which can be used to aid in discriminating the
ID data from the OOD data.

B. Procedure

To quantify how rich a feature space is, we investigated the
number of factors of variation in the features by following
the procedure taken in Section 5 of Roth et al which involves
calculating the spectral decay ρ (7). This involves computing
the singular value decomposition (SVD) of the features
of the training data, normalizing the sorted spectrum of
singular values, and computing the KL-divergence between
a D-dimensional discrete uniform distribution and the sorted
spectrum of singular values. Using this metric, lower values
of ρ indicate more directions of significant variance.

C. Results

From Fig. 2, it can be seen that both contrastive models
generally have lower values of ρ than the CE model, with
the exception of the CIFAR100 dataset where the CE model
has a lower ρ than the SupCLR approach. As the supervised
SupCLR model was able to outperform the supervised CE
model on all the datasets in which the SupCLR model had
a lower ρ value when using the Mahalanobis Distance, this
suggests that having a large number of significant directions
of variance is an important property for OOD detection. The
Moco model consistently has the lowest ρ which indicates its
features have the largest number of factors of variation. This
is likely due to the difficult task of instance discrimination
requiring learning a large number of factors of variation to



Fig. 2. Spectral decay for the different training datasets using different
learning approaches.

perform the task. Whereas, the CE and SupCLR models only
require learning features needed to discriminate data between
different classes resulting in a smaller number of significant
factors of variation.

VII. RELATED WORK

Recent approaches in OOD detection can be categorized as
calibration-based (20; 21), density estimation-based (22), and
self-supervised learning-based. Self-supervised learning-based
approaches can be split into auxiliary pretext task-based (23),
contrastive based (4) or approaches that utilize aspects of
both auxiliary pretext tasks and contrastive learning (5; 24).
The contrastive learning approaches vary significantly and
our work also falls in the category of investigating contrastive
learning for OOD detection. Some approaches use instance
discrimination-based pretraining followed by fine-tuning with
a supervised cross-entropy loss (4; 25). Both these papers and
ours focus on the instance discrimination contrastive learning
task, however, our work focuses on instance discrimination
in the absence of fine-tuning with a supervised loss. Other
approaches do not use the pretraining followed by fine-
tuning paradigm and instead focus on using a supervised
contrastive loss for OOD detection when labels are available
(26; 5; 27). Our work also examines the performance of the
supervised contrastive loss for OOD detection, although we
use the original supervised contrastive loss for the purpose
of analyzing the properties present in contrastive learning
which makes it effective for OOD detection. Furthermore,
our work differs from all the aforementioned work as it is the
first to examine the differences between using a supervised
contrastive compared to an instance discrimination approach
as well as the effect of different inference methods on OOD
detection performance.

VIII. CONCLUSION

In this work, we investigated the effectiveness and limita-
tions of two popular contrastive learning approaches for the
problem of OOD detection. In our work, we saw that:
• Contrastive learning learns a larger number of factors of

variation compared to classification networks. This can be
detrimental to OOD detection performance when using
KDE (unsupervised inference) but beneficial when using
Mahalanobis distance (supervised inference).

• Unsupervised instance discrimination learns a richer fea-
ture space with a wide variety of factors of variation
compared to supervised contrastive learning as shown by
analyzing the spectral decay.

• By having a large number of factors of variation, instance
discrimination can be more effective than the Cross-
Entropy baseline at far-OOD detection.

• Despite having a larger number of factors of variation
than the supervised contrastive Learning, instance dis-
crimination is ineffective at near-OOD detection.

• Instance discrimination is ineffective at near-OOD de-
tection as it leads to a poorer separation between the
different classes in the feature space which was shown
by having a lower E [KL (Overall‖Class)]. This is a
result of learning factors of variation which contain non-
class discriminatory information.

A. Limitations and Future Work

We would also like to point out some limitations of our
study. Firstly, we focus on two different contrastive learn-
ing methods which uses explicit negatives (e.g. MoCo and
SupCLR). We chose to focus on these two methods as these
methods are quite general contrastive learning approaches
where the only significant difference is is the use of super-
vision. Therefore, comparing the results of the two methods
should give an indication of the effect of supervision in OOD
detection performance. We believe that other methods based
on explicit negatives such as the InfoNCE and Triplet losses
would also exhibit similar behaviour (3; 9). An avenue of
future work could examine the effect of different properties
of self-supervised approaches on OOD detection performance.
Example of such properties could be whether a self-supervised
approach uses explicit negatives or not, as well as the effect
of redundancy reduction principle from Barlow Twins (28).
Furthermore, after identifying that OOD samples tend to be al-
located to classes that have a distribution similar to the overall
distribution, future work could involve investigating whether
it is possible to regularise the contrastive loss to prevent each
class from being too similar to the overall distribution. This
could enable the instance discrimination contrastive loss to
learn a rich feature space whilst also learning class-specific
semantic features which can improve near-OOD detection.
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